2025: Crisis Management Days Conference Proceedings
International and EU security, Public health aspects of crises and local community preparedness, Crisis situation analyses and learned lessons

Mass Casualty Incidents and Healthcare System Challenges: Capacity Adaptation and Emergency Medical Coordination

Tomislav Matejić
Surgery Clinic, Clinical Hospital Sveti Duh, Zagreb, Croatia
Snježana Kaštelan
University of Applied Sciences Velika Gorica
Ivana Lovrić
Health Center Zagreb East, Zagreb, Croatia
Uršula Kaštelan Brumen
University of Zagreb, Faculty of Economics & Business
Katarina Đukić
School of Medicine, University of Zagreb, Croatia

Published 2025-12-04

Keywords

  • mass casualty incidents,
  • crisis management,
  • medical logistics,
  • triage systems,
  • healthcare system resilience

How to Cite

Matejić, T., Kaštelan, S., Lovrić, I., Kaštelan Brumen, U., & Đukić, K. (2025). Mass Casualty Incidents and Healthcare System Challenges: Capacity Adaptation and Emergency Medical Coordination. Crisis Management Days. Retrieved from https://ocs.vvg.hr/index.php/DKU/article/view/782

Abstract

Mass casualty incidents (MCIs) put enormous pressure on healthcare systems, requiring a fast and well-organized response. These events, such as large-scale accidents, natural disasters, and pandemics, lead to a sudden increase in critically injured patients, demanding quick hospital capacity expansion, effective triage, and coordinated emergency medical services. One of the biggest challenges is ensuring hospitals can accommodate many patients without compromising care quality. This requires opening additional treatment areas, using mobile medical units, and transferring stable patients to other facilities to free up critical care beds. Ensuring a steady supply of essential medical resources, such as ventilators, surgical equipment, and blood products is crucial for effective response.

Triage is essential in prioritising care and using resources efficiently. Standardised triage systems, supported by digital tools and artificial intelligence, can help medical teams quickly assess injury severity and decide on the best course of action. Wearable monitoring devices can track patients' vital signs, allowing for better transport and hospital admission decisionmaking.

Effective emergency coordination depends on strong communication between hospitals, emergency responders, and government agencies. Using digital platforms and real-time data sharing ensures faster decision-making and better resource allocation. Helicopter transport and mass evacuation protocols can improve patient distribution, reducing strain on individual facilities.

Technology plays a growing role in MCI management. AI-driven systems can predict patient influx and help distribute medical supplies more efficiently. Geographic information systems can map affected areas, guiding emergency teams to where they are most needed. Electronic health records allow quick access to patient information, ensuring seamless care transitions between medical teams.

Long-term preparedness is key to strengthening healthcare system resilience. Regular training, simulation drills, and disaster response education for healthcare workers improve response efficiency. International collaboration in emergency planning, shared protocols, and resource exchanges enhance global readiness for future crises.

MCIs require a proactive approach integrating medical, technological, and logistical strategies. By improving triage methods, strengthening communication networks, and investing in healthcare infrastructure, medical systems can respond more effectively and save more lives. Future efforts should focus on better preparedness, advanced predictive tools, and stronger international cooperation to minimise the impact of mass casualty events.

References

  1. Abbas, R., & Miller, T. Q. (2025). Exploring communication inefficiencies in disaster response: Perspectives of emergency managers and health professionals. International Journal of Disaster Risk Reduction, 120, 105393. https://doi.org/10.1016/j.ijdrr.2025.105393
  2. Abir, M.; Choi, H., Cooke, C.R., Wang, S.C., Davis, M.M. (2012). Effect of a mass casualty incident: clinical outcomes and hospital charges for casualty patients versus concurrent inpatients. Academic Emergency Medicine, 19(3):280-6. doi: 10.1111/j.1553-2712.2011.01278.x.
  3. Achatz G, Bieler D, Franke A, Friemert B; and the Deployment, Disaster and Tactical Surgery Working Group of the German Trauma Society. Terror preparedness as a service of general interest: the Terror and Disaster Surgical Care (TDSC®)-course. Eur J Trauma Emerg Surg. 2020 Aug;46(4):671-672. doi: 10.1007/s00068-020-01454-6. PMID: 32803381.
  4. Alesi, A., Bortolin, M., Ragazzoni, L., & Lamberti-Castronuovo, A. (2023). Primary Health Care and Disasters: Applying a “Whole-of-Health System” Approach through Reverse Triage in Mass-Casualty Management. Prehospital and Disaster Medicine, 38(5), 654. https://doi.org/10.1017/s1049023x23006246
  5. Amlot, R., Carter, H., Riddle, L., Larner, J., & Chilcott, R. P. (2017). Volunteer trials of a novel improvised dry decontamination protocol for use during mass casualty incidents. PLOS ONE, 12(6), e0179309. https://doi.org/10.1371/journal.pone.0179309
  6. Andreatta PB, Maslowski E, Petty S, Shim W, Marsh M, Hall T, Stern S, Frankel J. Virtual reality triage training provides a viable solution for disaster-preparedness. Acad Emerg Med. 2010 Aug;17(8):870-6. doi: 10.1111/j.1553-2712.2010.00728.x. PMID: 20670325.
  7. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). (2022). S3-Leitlinie Polytrauma/Schwerverletzten-Behandlung (Version 3.0). https://register.awmf.org/de/leitlinien/detail/187-023
  8. Bamgboje‐Ayodele, A., Makeham, M., Kancijanic, D., Newton, N., Shah, K., Shaw, M., Johnston, A., Robinson, F., Hutchings, O., Norris, S. D., Singh, J., Baysari, M., Chow, C. K., Shaw, T., & Laranjo, L. (2024). How primary and tertiary care services collaborate in urgent care delivery: an evaluation of general practice advice lines. BMC Primary Care, 25(1), 406. https://doi.org/10.1186/s12875-024-02649-1
  9. Benson, M., Koenig, K. L., & Schultz, C. H. (1996). Disaster triage: START, then SAVE—a new method of dynamic triage for victims of a catastrophic earthquake. Prehospital and Disaster Medicine, 11(2), 117–124. https://doi.org/10.1017/s1049023x0004276x
  10. Cheng AW, McCreesh P, Moffatt S, Maziarz R, Vos D, Mastenbrook J. Going vertical: triage flags improve extraction times for priority patients. J Am Coll Emerg Physicians Open. 2020 Aug 21;1(6):1185-1193. doi: 10.1002/emp2.12235. PMID: 33392521; PMCID: PMC7771762.
  11. Chilcott RP, Mitchell H, Matar H. Optimization of Nonambulant Mass Casualty Decontamination Protocols as Part of an Initial or Specialist Operational Response to Chemical Incidents. Prehosp Emerg Care. 2019 Jan-Feb;23(1):32-43. doi: 10.1080/10903127.2018.1469705. Epub 2018 May 30. PMID: 29847186.
  12. Cicero MX, Santillanes GR, Cross KP, Kaji AH, Donofrio JJ. Prehospital Disaster Triage Does Not Predict Pediatric Outcomes: Comparing the Criteria Outcomes Tool to Three Mass-Casualty Incident Triage Algorithms. Prehosp Disaster Med. 2021 Oct;36(5):503-510. doi: 10.1017/S1049023X21000856. Epub 2021 Aug 16. PMID: 34392857.
  13. Cicurel, A., Sagy, Y. W., Feldhamer, I., Yaron, S., Caspi-Regev, S., Netzer, D., Arbel, R., & Lavie, G. (2025). Primary healthcare delivery adaptations in war-induced population displacement. Israel Journal of Health Policy Research, 14(1). https://doi.org/10.1186/s13584-025-00698-0
  14. Collins S, Williams N, Southworth F, James T, Davidson L, Orchard E, Marczylo T, Amlôt R. Evaluating the impact of decontamination interventions performed in sequence for mass casualty chemical incidents. Sci Rep. 2021 Jul 22;11(1):14995. doi: 10.1038/s41598-021-94644-0. PMID: 34294861; PMCID: PMC8298482.
  15. Cuttance, G.; Dansie, K.; Rayner, T. (2017). Paramedic Application of a Triage Sieve: A Paper-Based Exercise. Prehospital and Disaster Medicine, Feb;32(1):3-13. doi: 10.1017/S1049023X16001163. Epub 2016 Dec 14. PMID: 27964769.
  16. Deutsche Gesellschaft für Unfallchirurgie. (2016). Leitlinienreport zur AWMF Leitlinie Polytrauma/Schwerverletzten-Behandlung. https://www.awmf.org/leitlinien/detail/ll/012-019.html
  17. Dittmar MS, Wolf P, Bigalke M, Graf BM, Birkholz T. Primary mass casualty incident triage: evidence for the benefit of yearly brief re-training from a simulation study. Scand J Trauma Resusc Emerg Med. 2018 Apr 27;26(1):35. doi: 10.1186/s13049-018-0501-6. PMID: 29703219; PMCID: PMC5923025.
  18. Frykberg, E. R. (2002). Medical management of disasters and mass casualties from terrorist bombings: How can we cope? Journal of Trauma, 53(2), 201–212. https://doi.org/10.1097/00005373-200208000-00001
  19. Ghanbari‐Jahromi, M., Kharazmi, E., Bastani, P., Shams, M., Marzaleh, M. A., & Bahrami, M. A. (2024). Factors disrupting the continuity of care for patients with chronic disease during the pandemics: A systematic review. Health Science Reports, 7(2). https://doi.org/10.1002/hsr2.1881
  20. Hao, Y., Wang, J., Zhang, L., & Sun, C. (2024). Measuring and Analyzing the Spatiotemporal Characteristics of Emergency Logistics Coordination for Natural Disasters in the Yellow River Basin. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-5224741/v1
  21. Homier, V., Hamad, R., Larocque, J., Chasse, P., Khalil, E., & Franc, J. M. (2018). A randomized trial comparing telephone tree, text messaging, and instant messaging app for emergency department staff recall. Prehospital and Disaster Medicine, 33(5), 471–477. https://doi.org/10.1017/S1049023X18000745
  22. Jat MN, Rafique RA. Mass-Casualty Distribution for Emergency Healthcare: A Simulation Analysis. Int J Disaster Risk Sci. 2020;1:364-377. https://doi.org/10.1007/s13753-020-00260-3.
  23. Khoshmaram, N., Gholipour‎, K., Farahbakhsh, M., & Tabrizi, J. S. (2025). Strategies and challenges for maintaining the continuity of essential health services during a pandemic: a scoping review [Review of Strategies and challenges for maintaining the continuity of essential health services during a pandemic: a scoping review]. BMC Health Services Research, 25(1), 691. BioMed Central. https://doi.org/10.1186/s12913-025-12812-8
  24. Knight, J. F., Carley, S., Tregunna, B., Jarvis, S., Smithies, R., de Freitas, S., et al. (2010). Serious gaming technology in major incident triage training. Resuscitation, 81(9), 1175–1179. https://doi.org/10.1016/j.resuscitation.2010.03.042
  25. Malik, N. S., Chernbumroong, S., Xu, Y., Vassallo, J., Lee, J., & Bowley, D. M. (2021). The BCD Triage Sieve outperforms all existing major incident triage tools: Comparative analysis using the UK national trauma registry population. EClinicalMedicine, 36, 100888. https://doi.org/10.1016/j.eclinm.2021.100888
  26. Malik, N. S., Chernbumroong, S., Xu, Y., Vassallo, J., Lee, J., Bowley, D. M., et al. (2021). The BCD Triage Sieve outperforms all existing major incident triage tools. EClinicalMedicine, 36, 100888. https://doi.org/10.1016/j.eclinm.2021.100888
  27. Martín-Rodríguez F, López-Izquierdo R, Del Pozo Vegas C, Delgado Benito JF, Carbajosa Rodríguez V, Diego Rasilla MN, Martín Conty JL, Mayo Iscar A, Otero de la Torre S, Méndez Martín V, Castro Villamor MA. Accuracy of National Early Warning Score 2 (NEWS2) in Prehospital Triage on In-Hospital Early Mortality: A Multi-Center Observational Prospective Cohort Study. Prehosp Disaster Med. 2019 Dec;34(6):610-618. doi: 10.1017/S1049023X19005041. Epub 2019 Oct 25. PMID: 31648657.
  28. Mills B, Dykstra P, Hansen S, Miles A, Rankin T, Hopper L, Brook L, Bartlett D. Virtual Reality Triage Training Can Provide Comparable Simulation Efficacy for Paramedicine Students Compared to Live Simulation-Based Scenarios. Prehosp Emerg Care. 2020 Jul-Aug;24(4):525-536. doi: 10.1080/10903127.2019.1676345. Epub 2019 Nov 6. PMID: 31580178.
  29. Morris, S. C., Pelley, J. K., & Mitchell, S. H. (2017). Using a novel technology for disaster staff notification. American Journal of Disaster Medicine, 12(1), 63–65. https://doi.org/10.5055/ajdm.2017.0260
  30. Muguruma T, Toida C, Furugori S, Abe T, Takeuchi I. Validation of the Pediatric Physiological and Anatomical Triage Score in Injured Pediatric Patients. Prehosp Disaster Med. 2019 Aug;34(4):363-369. doi: 10.1017/S1049023X19004552. Epub 2019 Jul 25. PMID: 31340871.
  31. Ophir N, Ramaty E, Rajuan-Galor I, Rosman Y, Lavon O, Shrot S, Shiyovich A, Huerta-Hartal M, Kassirer M, Vaida S, Gaitini L. Airway control in case of a mass toxicological event: superiority of second-generation supraglottic airway devices. Am J Emerg Med. 2014 Dec;32(12):1445-9. doi: 10.1016/j.ajem.2014.08.067. Epub 2014 Aug 29. PMID: 25440004.
  32. Parotto, E., Salio, F., Valente, M., & Ragazzoni, L. (2025). Non-Communicable Disease (NCD) Management During Disasters and Humanitarian Emergencies: A Review of the Experiences Reported by Emergency Medical Teams (EMTs). Journal of Personalized Medicine, 15(6), 255. https://doi.org/10.3390/jpm15060255
  33. Paul, A. O., Kay, M. V., Huppertz, T., Mair, F., Dierking, Y., Hornburger, P., et al. (2009). Validation of the prehospital mSTaRT triage algorithm. Der Unfallchirurg, 112(1), 23–30. https://doi.org/10.1007/s00113-008-1517-6
  34. Schulz, F., Nguyen, Q., Baetzner, A. S., Sjöberg, D., & Gyllencreutz, L. (2024). Exploring medical first responders’ perceptions of mass casualty incident scenario training: a qualitative study on learning conditions and recommendations for improvement. BMJ Open, 14(7). https://doi.org/10.1136/bmjopen-2024-084925
  35. Schweigkofler, U., Kleber, C., Auhuber, T.C., Jung, H.G., Cwojdzinski, D., Hoffmann, R. (2019). Kostenabschätzung für MANV-Übungen im Krankenhaus [Cost estimation for hospital mass casualty exercises]. Unfallchirurg, 22(5):381-386. German. doi: 10.1007/s00113-019-0619-7.
  36. Shimonovich S, Gigi R, Shapira A, Sarig-Meth T, Nadav D, Rozenek M, West D, Halpern P. Intranasal ketamine for acute traumatic pain in the Emergency Department: a prospective, randomized clinical trial of efficacy and safety. BMC Emerg Med. 2016 Nov 9;16(1):43. doi: 10.1186/s12873-016-0107-0. PMID: 27829367; PMCID: PMC5103427.
  37. Steen‐Tveit, K., Munkvold, B. E., & Rustenberg, K. (2024). Use of Standard Operating Procedures for Supporting Cross-Organizational Emergency Management: Challenges and Opportunities Identified from a Tabletop Exercise. International Journal of Disaster Risk Science, 15(5), 673. https://doi.org/10.1007/s13753-024-00583-5
  38. Stratmann, D. (2003). Strategien des Rettungsdienstes: Konsequenzen nach dem 11. September 2001. Notfall + Rettungsmedizin, 6(2), 102–106. https://www.grc-org.de/files/AnnouncementFiles/document/Notfall%20+%20Rettungsmedizin_Ausgabe%204-final.pdf
  39. Suda, A. J., Franke, A., Hertwig, M., & Gooßen, K. (2025). Management of mass casualty incidents: A systematic review and clinical practice guideline update. European Journal of Trauma and Emergency Surgery, 51(1), 5. https://doi.org/10.1007/s00068-024-02727-0
  40. Suda, A. J., Franke, A., Hertwig, M., & Gooßen, K. (2025). Management of mass casualty incidents: A systematic review and clinical practice guideline update. European Journal of Trauma and Emergency Surgery, 51(1), 5. https://doi.org/10.1007/s00068-024-02727-0
  41. Ugelvik, K. S., Thomassen, Ø., Braut, G. S., Geisner, T., Sjøvold, J. E., & Montán, C. (2025). A national study of in-hospital preparedness for Mass Casualty Incidents and disasters. European Journal of Trauma and Emergency Surgery, 51(1), 18. https://doi.org/10.1007/s00068-024-02685-7
  42. Vassallo J, Horne S, Ball S, Smith J. Usefulness of the Shock Index as a secondary triage tool. J R Army Med Corps. 2015 Mar;161(1):53-7. doi: 10.1136/jramc-2013-000178. Epub 2014 May 2. PMID: 24794704.
  43. Wilkinson, D., Zohny, H., Kappes, A., Sinnott-Armstrong, W., & Savulescu, J. (2020). Which factors should be included in triage? BMJ Open, 10(12), e045593. https://doi.org/10.1136/bmjopen-2020-045593
  44. World Health Organization. (2022). Mass casualty management systems: strategies and guidelines for building health sector capacity. https://www.who.int/teams/integrated-health-services/clinical-services-and-systems/emergency-and-critical-care/mass-casualty-management
  45. Xia, H., Sun, Z., Wang, Y., Zhang, Z., Kamal, M. M., Jasimuddin, S. M., & Islam, Md. N. (2023). Emergency medical supplies scheduling during public health emergencies: algorithm design based on AI techniques. International Journal of Production Research, 1. https://doi.org/10.1080/00207543.2023.2267680
  46. Zhang, Y., Zhang, C., Liu, Z., & Zhao, W. (2025). Intelligent emergency-response resilience assessment and recovery scheduling of transportation networks. 52. https://doi.org/10.1117/12.3050768